Exercise 95

Let $C(t)$ be the concentration of a drug in the bloodstream. As the body eliminates the drug, $C(t)$ decreases at a rate that is proportional to the amount of the drug that is present at the time. Thus $C^{\prime}(t)=-k C(t)$, where k is a positive number called the elimination constant of the drug.
(a) If C_{0} is the concentration at time $t=0$, find the concentration at time t.
(b) If the body eliminates half the drug in 30 hours, how long does it take to eliminate 90% of the drug?

Solution

Start with the differential equation for the concentration.

$$
C^{\prime}(t)=-k C(t)
$$

Divide both sides by $C(t)$.

$$
\frac{C^{\prime}(t)}{C(t)}=-k
$$

Rewrite the left side as a derivative of a logarithm by using the chain rule.

$$
\frac{d}{d t} \ln C=-k
$$

The function you take a derivative of to get $-k$ is $-k t+D$, where D is any constant.

$$
\ln C=-k t+D
$$

Exponentiate both sides to solve for C.

$$
\begin{aligned}
& e^{\ln C}=e^{-k t+D} \\
& C(t)=e^{D} e^{-k t}
\end{aligned}
$$

Part (a)
At $t=0$, the concentration is known to be C_{0}.

$$
C(0)=e^{D} e^{-k(0)}=C_{0} \quad \rightarrow \quad e^{D}=C_{0}
$$

Therefore, the concentration at time t is

$$
C(t)=C_{0} e^{-k t} .
$$

Part (b)

Use the fact that the body eliminates half the drug in 30 hours to determine k.

$$
\begin{aligned}
C(30) & =C_{0} e^{-k(30)} \\
\frac{C_{0}}{2} & =C_{0} e^{-30 k} \\
\frac{1}{2} & =e^{-30 k} \\
\ln \frac{1}{2} & =\ln e^{-30 k} \\
-\ln 2 & =(-30 k) \ln e \\
k & =\frac{\ln 2}{30}
\end{aligned}
$$

As a result, the concentration after t hours is

$$
\begin{aligned}
C(t) & =C_{0} e^{-\left(\frac{\ln 2}{30}\right) t} \\
& =C_{0} e^{\ln 2^{-t / 30}} \\
& =C_{0}(2)^{-t / 30} .
\end{aligned}
$$

To determine how long it takes to eliminate 90% of the drug, set $C(t)=0.1 C_{0}$ and solve the equation for t.

$$
\begin{aligned}
& 0.1 C_{0}=C_{0}(2)^{-t / 30} \\
& 0.1=2^{-t / 30} \\
& \ln 0.1=\ln 2^{-t / 30} \\
&-\ln 10=\left(-\frac{t}{30}\right) \ln 2 \\
& t=\frac{30 \ln 10}{\ln 2} \approx 99.6578 \text { hours }
\end{aligned}
$$

